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Introduction
Crowd behavior simulation has been an active field of re-
search because of its utility in several applications such as
emergency planning and evacuations, designing and plan-
ning pedestrian areas, subway or rail-road stations, besides
in education, training and entertainment. The most ad-
vanced and realistic simulation systems employ intelligent
autonomous agents with a balance between individual and
group intelligence for scalability of the architectures. Al-
though several systems have even been commercialized, lit-
tle attention has been accorded to the problem of validating
the outcomes of these simulations in a generalized manner,
against reality. The extent of validation fails to go much
beyond visual matching between the simulation and the ac-
tual scenarios (with recordings of human crowds), which can
lead to highly subjective and often questionable conclusions.
The existing numerical measures often rely on ad-hoc ap-
plications, e.g., local crowd densities are measured to verify
patterns, without a systematic procedure to identify at what
times in the simulation and the scenarios can the densities be
compared. Furthermore, if there are multiple systems that
simulate crowd behavior in the same scenario in the same
virtual environment, then no technique is currently known to
quantitatively compare these systems in terms of realism. In
this abstract, we present the first (to the best of our knowl-
edge) principled, unified, and automated technique to quan-
titatively validate and compare the global performance of
crowd egress simulation systems. We also evaluate a multi-
agent based crowd egress simulation system (that we have
recently developed, but we do not discuss this system here)
using our technique and demonstrate a high degree of valid-
ity of that system as well.

The validation algorithm
Almost all of the simulation systems include a detailed ge-
ometry of the environment (such as a sport stadium, or a
subway station), partitioned into a set of p convex polygons,
{R1, R2, . . . Rp}. These polygons are the surfaces on which
the autonomous agents can move. The system simulates the
navigation behavior of the agents in context of the environ-
ment’s geometry. In an egress simulation, there is one or
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more sink of agents (i.e., where agents exit the virtual envi-
ronment), but there is no source of agents (i.e., no polygon
where agents are spawned). Instead, the agent distribution
over the regions is pre-specified at the start of the simula-
tion, and changes only by the simulated egress behavior.

In order to evaluate such an egress simulation system, we
subscribe to the general idea of seeking macroscopic patters,
but in a quantitative manner. We compare the simulation
run in the virtual environment, and the actual scenario with
real people navigating the corresponding real environment,
with identical initial conditions. This comparison is accom-
plished by calculating the distance between the distributions
of agents over the p poygonal regions in the simulation (sim),
and the distribution in the actual scenario (scn) over the
same regions, viz.,

D(simt, scnt′) =

i=pX

i=1

 
Ct

sim(Ri) − Ct′
scn(Ri)

X(Ri)

!2

where Ct
x(r) gives the count of the number of agents in region

r at time t, and X(Ri) is the maximum capacity of the region
Ri. It is important to notice that the time-points at which
these comparisons can be made might be on different scales,
due to difference in the speeds between agents and people.

We assume that Ct
scn(Ri) values are given for certain dis-

crete time points t0, t1, . . . tk at constant interval τscn, i.e.,
ti − ti−1 = τscn, ∀i = 1 . . . k. These could be generated
from the snapshots of crowd video at regular intervals. We
call these time points snap points. At the start of valida-
tion, the distribution Ct0

scn(Ri) is replicated in the simula-
tion and it is run for τsim units of simulation time. Then
D(simτsim , scnt1) is compared to a distance threshold δ
(0 ≤ δ ≤ 1). If the former is lower then the simulation
continues to run, otherwise it “snaps”. This means that the
distribution Ct1

scn(Ri) is replicated in the simulation and it
is run for another τsim units of time. This process continues
with the comparison of D(simi∗τsim , scnti) against δ in the
ith step, until we reach tk, and at this point the total num-
ber of “snaps” – represented as nδ – is recorded as a function
of δ.

The need to check for “snaps” at a regular interval stems
from the fact that most sophisticated crowd simulation sys-
tems incorporate complex agent-based models, producing
non-linear behavior as a function of time. Such emergent
behavior can quickly diverge from the behavior being mod-
eled, if small discrepencies are allowed to accumulate, due to
chaotic effects. Hence, any discrepency that is determined
to be sufficiently large needs to be reset, by re-matching the
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simulation distribution with the corresponding distribution
from the scenario – a process that we call “snap”. The main
idea is that a simulation system that needs to snap fewer
times for a given δ, compared to another simulation system
in the same scenario, is more accurate for that scenario and
for that δ. A metric for comparison between two simulation
systems in terms of accuracy for any given scenario could be
the area under the curve of nδ vs. δ; the lower this area, the
more accurate the simulation system. This is illustrated in
Figure 1 (left).
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Figure 1: Left: Illustration of nδ vs. δ curves for
two simulation systems. Right: Actual nδ vs. δ
plots from the two methods for computing τsim for
a simulation system.

The main challenge underlying the above validation algo-
rithm is in calculating the appropriate value of τsim, since
the timescale may differ between the simulation and the sce-
nario, e.g., the agents may be navigating too fast compared
to real people in the scenario, or too slow. Moreover, these
speed-discrepencies may not stay constant, but vary from
region to region and also with time. Any endeavor at such
synchronization may also be affected by micro-level occur-
rences in reality that may be hard to reproduce spatially
and temporally in simulation, such as people stopping to
chat (in a zero-panic scenario), which ultimately affects the
count distribution, and thus D. The premise of our valida-
tion approach is that the inevitable mismatches in micro-
level occurrences can be overlooked as long as the macro-
level patterns (e.g., agent count distribution over regions)
match well enough. Clearly, the problem of finding appro-
priate times to match the simulation with the scenario at
the macro-level is the key to this approach. We now de-
scribe two approaches – an off-line and an on-line approach
– to calculating τsim.

Off-line (pre-)calculation of τsim

Here we describe an off-line strategy to find the best value of
τsim that will enable the closest possible match between the
simulation and the scenario. Let Ct

x =
P

i Ct
x(Ri). Then

Lj
scn = Ct0

scn − C
tj
scn is the number of people that have left

the environment (i.e., the set of p polygons) between time t0
and tj . The sequence {Lj

scn}j=k
j=1 must be a non-decreasing

sequence to match with the assumption of there being no
agent source in the simulation.

In order to pre-calculate τsim before the validation runs,
we run the simulation once, populated with the distribution
Ct0

scn(Ri), and record the total agent counts Ct
sim at small in-

tervals Δ, thus producing a sequence C0
sim, CΔ

sim, C2Δ
sim, . . . ,

CmΔ
sim , where CmΔ

sim ≤ C
tk
scn and C

(m−1)Δ
sim > C

tk
scn. The ex-

istence of m is guaranteed by the assumption that there is

no agent source in the simulation. As in the case of the sce-
nario, we can then generate another non-decreasing sequence
{Lj

sim}j=m
j=1 , where Lj

sim is the number of agents that have
egressed the virtual environment by time jΔ from the start
of the simulation. If Δ is chosen sufficiently small, then it
can be ensured that m � k.

Given the above set-up, τsim can now be estimated as

τsim ≈ h∗Δ

where integer h∗ is found by solving the discrete optimiza-
tion problem h∗ = arg minh

Pk
s=1(L

sh
sim − Ls

scn)2 under the
constraint that kh ≤ m.

On-line adjustment of τsim

Another technique for calculating τsim is to adapt it on-line
during evaluation of each segment (between snap-points). In
particular, the information generated during the run through
the segment tj−1 to tj is used to adapt τsim for the segment
tj to tj+1. Let τ j

sim be the value of τsim calculated at snap-
point tj , and used for this segment. This is calculated as

τ j
sim = τ j−1

sim ·
 

C
tj−1
scn − C

tj
scn

Cx
sim − Cy

sim

!

where x =
Pj−2

t=0 τ t
sim, and y = x+τ j−1

sim , for j = 1, . . . , k−1,

with τ−1
sim = 0, and τ0

sim = t1 − t0. The ratio C
tj−1
scn −C

tj
scn

Cx
sim−C

y
sim

gives the relative number of egresses between the scenario
and the simulation during the segment tj−1 to tj , and acts as
an estimate of how much faster (if < 1) or slower (if > 1) the
simulation must be interrupted (and possibly snapped) for
the current segment, to produce a better (expected) match
with the following segment of the scenario.

Although this method is computationally cheaper than
the off-line calculation of τsim, the estimate is expected to al-
ternate between overcompensation and undercompensation
for the discrepency in the number of egresses between the
simulation and the scenario. Hence, unless k is large, the
estimate may not find enough time to stabilize. Therefore
we expect the off-line estimation method to produce greater
accuracy for validation with a few snap-points.

Results
We have implemented both techniques for estimating τsim,
and evaluated a single segment of 7 minutes duration (with
7 possible snap-points at 1 minute intervals) from the video
footage of spectators from an actual football game. The seg-
ment starts with the final declaration of scores in the game,
at which point spectators start to leave in large numbers.
The segment ends (roughly 7 minutes later) when almost all
spectators have left. We have recently developed a multi-
agent based crowd egress simulation system which we used
in the current evaluation against this video segment. The
plots of nδ vs. δ resulting from the application of our vali-
dation algorithm is shown in Figure 1 (right). As expected,
with just 7 snap-points, the off-line estimation produces a
better snap-point frequency curve. This off-line plot also
shows that the simulation system does not need to snap even
once for δ > 25%, which clearly establishes a high accuracy
for this system for the given segment.
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